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1. Introduction
Solvents play quite an important role in most chemical and biological processes1-3.

It is widely accepted that the presence of water or other solvents in many chemical 

reactions can result in much lower energy barrier. In enzymatic catalysis, water mediate 

reaction pathways have been observed in various studies4,5. In addition, different 

conformation flexibility and hydrogen bond patterns have been discovered for cyclic 

peptides in the presence of membrane and water6, further illustrating the impact of 

solvent in biological activities such like membrane penetration. Moreover, as will be 

discussed later in this review, water also plays a critical role in host-guest chemistry and 

thus is essential to drug design7,8. As such, it is not surprising that accounting for 

solvents is critical in drug discovery since drugs must modulate biological systems.  

Solvent interactions have an impact in all stages of drug discovery.  During early 

discovery stages water solubility is necessary for testing weak inhibitors and subsequent 

optimization i.e. poorly soluble compounds easily precipitate making testing difficult, if 

not impossible.  In terms of lead optimization, ligand and target interactions with water 

are both important.  For the ligand, Lipinski’s rule of 59 tells us a logP (octanol-water 

partition coefficient) below 5 is desirable for an orally active compound.  For the target, 

displacement of weakly-bound structural waters by a ligand can sometimes improve 

binding affinity8; alternatively strongly-bound structural waters can serve as hydrogen 

bond donors or acceptors for an inhibitor.  It is noteworthy that while a compound’s 

chemical structure is not mutable in the later stages of drug discovery, its physico-

chemical properties have a profound effect on its success.  The ability of the compound to 

penetrate the gut-wall, enter the blood stream, permeate through cell membranes and, 

sometimes, the nuclear membrane hinges on a balance between interactions with polar 

and non-polar environments.  For all these reasons, water is the most important solvent in 

drug discovery.

A proper description of solvation effects has always been a challenge in molecular 

modeling and simulations3,10. Many approaches have been made to capture solvents 

effects in biological processes, by either applying continuum (implicit) solvent models11-

16, explicit solvent models17-20, or treating solvent molecules quantum mechanically21-23. 



Explicit solvent models, as the name indicates, treat solvents explicitly based on 

molecular mechanics approximations, which benefits the reproduction of solvent 

molecules’ physical function in the focused processes. Different water models have been 

developed18,24,  such as the widely implemented TIP3P, TIP4P and finer models. 

However, more computational cost would be expected associated with more advanced 

models. Implicit solvent models treat solutions as continuum dielectrics based on the 

Poisson-Boltzmann (PB) equation. Kuhn and Kollman conducted a famous binding free 

energies analysis using PB solvation model14, making it a popular approach thereafter. 

The potential high computational cost associated with solving PB equation stimulates the 

development of Generalized Born (GB) approach, which is still based on PB equation but 

using more approximations, at fairly high accuracy. In fact, the PB and GB based MM-

PB/SA and MM-GB/SA has become very popular approaches nowadays in drug 

discovery. In spite of numerous solvent models developed, it is still difficult to capture 

solvation effects accurately25 even when using extensive free energy calculations in the 

context of statistical mechanics. Efforts to develop solvent models and strengthen 

understanding of solvent effects in chemical or enzymatic processes have never 

stopped23,26,27. Among all of the solvents, water represents a simple but challenging and 

somewhat critical model28,29. On one hand, water is essential to the function of most 

biological complexes. They are capable of not only stabilizing structures in protein 

folding2,30-32 or/and ligand-protein binding, but also often participating in catalysis1,5,33,34. 

On the other hand, despite many different implicit or explicit models, or even quantum 

(some times ab initio) approaches, it remains challenging to reproduce its physical 

properties.

Computer-aided drug design (CADD) aims to design ligands that bind specific 

target proteins with high affinities.  The proper treatment of water in drug discovery is 

essential but complicated because: 1) desolvation of the protein binding pocket and 

ligand both contribute to the binding affinity and 2) the solvent dielectric dampens 

electrostatic interactions in a non-uniform manner that depends on the specific geometry 

of protein/ligand complex. There are many reviews focused on this topic27,29,35-38. To 

further complicate matters, structural waters often bridge or accompany ligand-protein 

interactions. An average of 4.6 ligand-bound water molecules were identified in each 



ligand-receptor complex according to a recent survey39. Unfortunately, not all 

crystallographic waters behave the same way. The displacement of some crystal waters 

by a ligand often is entropically favorable, but that is not always the case8. The complex 

energetics of structural waters displacement complicate docking calculations that aim to 

predict binding poses and estimate binding affinities. To understand the role of a specific 

water molecules present in or near the binding site is important but hard to achieve, since 

such attempt usually associated with costly statistical mechanics based free energy 

approaches. Major efforts have been made to improve water/solvent effect in CADD in 

two directions: (1) to handle waters in docking and virtual screening calculations, and (2) 

to predict water displacement in the lead optimization stage40. Many studies focused in 

the virtual screening aspects and improvements were reported41-49, while the latter is a 

trickier task since the water network might be totally different in apo structures and in 

ligands bound complexes. In the thermodynamic decomposition of the ligand-protein 

binding processes, the desolvation of the ligand-complementary protein binding pocket 

usually accounts for a non-trivial part, if not the dominant part, of the total binding 

affinity. Therefore, accurately describing water displacement is critical to predicting 

binding affinities. Unfortunately, traditional approaches are not helpful in this regard –

mos t  X-ray structures detect only a subset of waters without any energetic or 

thermodynamic information, while those popular computational methods applied in 

CADD, such as MM-PB/SA and/or MM-GB/SA, tend to ignore this entropy contribution.

However, computational chemists still prefer MM-PB/SA and/or MM-GB/SA because of 

the compromise between speed and accuracy.

Higher accuracy can be achieved via computationally more expensive statistical 

mechanics based free energy approaches. These methods, including thermodynamic 

integration (TI) or free energy perturbation theory (FEP), can help detect the loci and 

energetics or water molecules in the binding pocket. Pan et al. reported conducting grand 

canonical ensemble free energy simulations to improve the potency of lead compounds 

by targeting weakly bound water at the ligand-protein interface50. Yu and Rick 

implemented thermodynamic integration molecular dynamics51 (MD) simulations to 

estimate the free energy, entropy and enthalpy of binding a water molecule in DNA 

gyrase52 and other proteins53. Their studies revealed the unfavorable entropy (-1.1 to -3.1 



kcal/mol for TΔS52) associated with the addition of water to the binding sites, and a good

correlation between the decreasing free energy and the change of hydrogen bond numbers

associated with water addition. Baron, Setny and McCammon investigated water 

thermodynamics associated with several cavity-ligand recognitions based on a potential 

of mean force (PMF) approach, and discovered the main driving force of molecular 

recognition or rejection is enthalpy or entropy contributions from water instead of ligand 

or receptor54. Later, Baron and Molinero extended this approach to Coarse-grained 

simulation and made comparison to atomistic simulations55. Michel, Tirado-Rives and 

Jorgensen performed a Monte Carlo (MC) based free energy perturbation (FEP) 

simulation coupled with JAWS (Just Add Water Molecules, an approach designed to 

predict the water placement in binding sites for a given structure56) to inspect the impact 

of displacing ordered water in the active sites of three enzymes25,56. Their results strongly 

suggested that careful examination and analysis is required for accurate results, as direct 

modification of ligand in free energy calculation might result in trapping ordered water 

thus misleading the lead optimization. A subsequent research by Jorgensen and 

coworkers illustrated that the traditional solvation approach of immersing the 

protein/ligand system in a water box affects the accuracy and the combination of the 

JAWS algorithm and MC/FEP can dramatically improve the results, since the initial 

placement of water molecules play a critical role in this protocol57. In addition, Essex and 

coworkers have carried out MC/FEP protocol in the context of replica exchange 

simulation to examine the difficulty level of displacing a conserved or a displaceable 

water molecule in the active site of a few ligand-protein complexes58, and the free energy 

changes (ΔG) of -2.2, -2.4 and +3.0 kcal/mol were reported. Conceivably, significantly 

lower binding free energies were reported for those displaceable waters than those 

conserved. Moreover, Michel and Essex also reviewed several popular free energy 

approaches in this regard and to the extent of predicting absolute protein-ligand binding 

affinities59. Interestingly, this review also noted that a computed free energy gain of 1.0 

kcal/mol or more is more likely to be detected in experimental measurements.

Unfortunately, the extensive time-demanding nature of these methods prevents

them from being widely applied in CADD, which usually requires the scaning of tens to 

thousands of lead compounds. To fill the gap between accuracy and speed, WaterMap 



has become a popular subject in recent years7,8,60. Successful implementations of 

WaterMap to improve virtual screening and/or lead optimization have been reported. 

Though it is neither a robust tool that predicts standard (absolute) binding free energies

nor a very cheap approach due to the use of MD simulations, it works amazingly well on 

congeneric ligands with hydrophobic effect dominant binding processes. In this review, 

we will focus on WaterMap and introduce the basics and some recently notable successes 

in guest-host drug discovery with this protocol applied. Readers, after reading this review,

will become familiar with the basic ideas, implementation, limitations and potential 

improvements of this protocol, as well as the strategy to face water displacement in 

CADD.

2. Basic concept of WaterMap
Hydrophobic interactions are believed to deliver the principal thermodynamic 

driving force to molecular recognition and the binding process. The idea underlying this 

assumption is that a system gains in binding free energy via releasing molecules from a 

hydrophobic thus suboptimal pocket into bulk solvent. 

WaterMap7,8,61 is a protocol that performs a post MD trajectory-analysis based on 

inhomogeneous solvation theory proposed by Lazaridis in 199862,63 to calculate the free 

energy cost of moving a water molecule from a protein hydration site into bulk solvent.

The inhomogeneous solvation theory features an entropy expansion term as the function 

of orientational and spatial particle correlations. In this model, bulk solvent corresponds 

to zero entropy while the excess entropy can be estimated for structured water localized 

in or near the binding site. In the application of the WaterMap protocol, the first order 

and partial of the second order of the expansion will be calculated (Equation 1).

Equation 1. Excess entropy estimated by inhomogeneous solvation theory.



where r and ω are Cartesian coordinates and Euler angle orientation of water, gsw(r,ω)

describes the single-body distribution of water at r and ω, gsww(r,ω) gives the two-body 

distribution and ρw corresponds to the density of the bulk.

Although fairly accurate results have been achieved by using traditional approaches 

that rely on pairwise atom-atom or buried surface area terms parameterized against 

different bio-environments to describe hydrophobic effect, such a strategy fails to explain

the super affinity in the well-known streptavidin-biotin complex. Young et al conducted 

the first WaterMap application7 in order to address this problem. Short (10ns) MD

simulations were carried out using the OPLS-2005 all-atom force filed64,65 and TIP4P18

water model on several apo protein receptors. The non-solvent heavy atoms were 

harmonically restrained, which mimics the so-called rigid receptor approximation widely 

implemented in molecular docking. A subsequent cluster analysis was performed to 

identify the principal hydration sites, through partitioning the binding-cavity solvent 

density distribution. The next step is to estimate the entropy penalty of structure water at 

each hydration sites using inhomogeneous solvation theory62,63. A stable five-membered 

water ring in the binding site of streptavidin was highlighted and the corresponding

entropic contribution (~ -7 kcal/mol) to the free energy of water displacement was 

estimated to contribute up to five orders of magnitude in the binding affinity constant. On 

the contrary, solvation of COX-2 binding cavity was found energetically unfavorable and 

it was believed the narrow hydrophobic enclosure discourages the formation of 

complementary hydrogen bonds. Certain mutations capable to remove hydrophobic 

enclosure could result in more entropically favorable solvation in the binding site. 

WaterMap powered explicit solvent simulations successfully explained these binding 

behaviors, nonetheless PB-based methods underestimates the binding affinities because 

of their incapability on molecular-length scale solvation physics.

Abel et al. extended the effort to factor Xa (fXa) and built a model to predict the 

effect of displacing water from the active site with atomic detail8. Using data from short

MD simulations, a total of 31 pairs of fXa ligands were examined and a high correlation 

with experimental relative binding free energies (R2=0.81, or 0.80 using leave-one-out 

validation) was obtained. Comparing to a correlation of R2=0.29 from a traditional MM-

GB/SA approach, the advantage and efficiency of the WaterMap protocol is obvious. In 



addition, the hydration sites detected by WaterMap were directly compared to the 

crystallographic water locations66 as well as data from previous MD study67, and showed 

high consistency (9 of 11 crystal water molecules are within 1.5Å from predicted 

hydration sites, while 2 others are also within 2.5Å range), except for those detected by 

computational procedure but not present in crystal structure (1HCG, resolved at 2.2Å). 

This discrepancy is possibly attributed to the sensitivity of identifying water molecules to 

the resolution of X-ray crystallography68 and many other physical factors, such as 

temperature, pH and so on.69,70 More importantly, a descriptors (Equation 2) was 

developed to quantitatively predict the impact of displacing water in the binding site. 

Such a scoring function successfully captured the difference in free energy contribution 

of substituting solvent, energetically favorable or unfavorable, for the congeneric sets of 

ligand. Comparing to traditional approaches in which a specific water molecule is 

considered either energetically favorable or unfavorable to be replaced, WaterMap 

protocol investigates whether displacing a water molecule is thermodynamically 

favorable or not, therefore producing more reliable prediction in binding affinity 

differences. Computational cost of this work is also modest - meaningfully only one MD 

simulation was performed on a single structure, which was subsequently used for the 

superposition of congeneric ligands. However, fXa is a receptor well known for the super 

rigidity, therefore, the real computational expense for a comparable size of study on 

another protein might be much higher.

Equation 2. Displaced water - binding affinity relationship function. RCO is the distance 
cutoff (2.24Å8), ΔGhs is the free energy to transfer water from hydration site into bulk, 
and Θ is the Heaviside step function.

In a later study, Beuming et al. extended the implementation of WaterMap into the 

investigation of protein-peptide binding between the G-protein coupled receptors 

(GPCRs) and PDZ domains71. The PDZ domains exhibit a dominant hydrophobic 

interaction and only limited induce-fit structural changes, therefore PDZ domain binding 

should be an ideal model to validate the WaterMap protocol against the protein-peptide 

interaction. The results revealed that in Erbin72 PDZ domain (PDB #1MFG), the 



hydration site identified by the β-sheet and several polar amino acid side chains, such as

Ser26, Arg49 and Gln51 was unfavorable because of the absence of potential hydrogen 

bond partners instead of being a hydrophilic site as people usually thought. Using 

WaterMap and the displaced solvent functional (Equation 2), the predicted free energy 

differences and the trends are in good agreement with their corresponding experimental 

data. However, like in protein-ligand models, the missing of entropy terms and strain 

energy made the predicted binding free energies more favorable than experimental 

measurements. Additionally, the missing of second and highest order terms in the 

calculation of entropy results in the protocol (Equation 1) overestimating ΔΔG between 

peptide pairs. Nonetheless, this protocol was indeed designed to predict binding free 

energy differences among congeneric ligands, instead of computing absolute binding free 

energies; therefore, the implementation of WaterMap protocol in specific type of protein-

peptide binding models is still promising.

3. Recent Implementation of WaterMap 
Displacing weak bound water molecules inside a protein binding pocket is usually 

a tricky, non-trivial business. Using computational approaches in lead optimization can 

foresee the difference in the water network between lead-enzyme complexes and apo 

structures, hence saving time, cost and effort. Accompany with the growing computer 

power, using the alchemical or PMF based sampling technique to predict the standard 

binding free energies has been reported. However, these Class 1 methods, as classified by 

Guvench and MacKerell36, are still hardly feasible to be applied for a large amount of 

lead compounds. Under such a scenario, WaterMap and other Class 2 methods obviously 

have a huge advantage, especially for congeneric ligands sets where WaterMap works 

fantastically well. WaterMap has been applied to multiple pharmaceutically important 

enzyme targets, including kinase, GPCR and many others. In the following section, we 

will go over recent literature reports that have implemented this in silico protocol.

Robinson, Sherman and Farid73 implemented WaterMap protocol to illustrate the 

thermodynamic profiles of water molecules in the binding sites of four kinase74 systems. 

The results allowed them to rationalize the puzzled binding selectivity and improve 

structure-activity relationships (SARs). Pearlstein et al.75 applied WaterMap to detect the 



locations and investigate the thermodynamic properties of hydration sites in the binding 

of LDL receptor (LDL-R) into proprotein convertase subtilisin-kexin type 9 (PCSK9)76-78. 

Their computed energies of placing water in stable hydration site and water displacement 

from unstable hydration site showed good agreement with measured kON
79 and kOFF

79, 

respectively. Their assumption that (in this case) the rate-determining step of protein-

ligand binding and unbinding are associated with the unfavorable water displacement and 

resolvation process was validated. Higgs, Beuming and Sherman80 mapped the hydration 

sites and studied the thermodynamic profiles for the GPCR adenosine A2A (A2A) 

receptor81-83 in order to explain the interesting and inexplicable SARs between 

triazolylpurine analogs and A2A receptor6. Based on their outputs, unfavorable small 

ligands displace the stable water, while favorable ‘longer’ candidates displace more 

thermodynamically unstable water as they extend themselves into that region, thus 

explaining the odd SARs previously observed. Once again, finding ‘thermodynamically’

correct displaceable water becomes the key to improve the potency in drug discovery. 

Abel, Salam and coworkers84 extend the approach to explain the SARs established using 

traditional computational methods in the inhibitor binding in blood coagulation factor 

serine protease85-87. Small modifications to the ligands (e.g. chloro- to methyl-) lead to 

favorable water displacement in certain subpockets such as the ester-binding pocket, thus 

increasing the potency. The authors also reported their approach to apply WaterMap 

produced displacement energy into prediction of relative binding free energies, with 

additional terms included. 

Although it is commonly accepted that hydrophobic effect accounts for a 

significant part of ligand-receptor binding affinities, it is yet clear whether there are 

multiple sources of hydrophobic effect. Recently, Snyder et al.60 reported their 

investigation of the molecular recognition mechanism of arylsulfonamides binding to 

carbonic anhydrase. This work aimed to distinguish different types of hydrophobic 

effects in biological recognition process. Though most binding processes featured 

hydrophobic association are considered as entropically driven88, the conversions of a 

couple of monocyclic ligands to corresponding bicyclic ligands exhibit an enthalpy-

driven hydrophobic effect88,89 (ΔΔG = -2.8 kcal/mol, ΔΔH = -3.0 kcal/mol, -TΔΔS = 0.2 

kcal/mol). The enthalpically unstable water molecules were displaced with the increase in 



ligand size (volume), resulting in gain in affinity. The reordering of water network in the 

binding pocket was responsible for the enthalpy-entropy compensation while the 

increasing number of water caused the loss in entropy. Different thermodynamic profiles 

of hydrophobic effects were discussed in this study. It was also suggested that the 3-D

mapping of water in binding pocket might be as important as the shape of the site itself. 

Displacing thermodynamically unstable water against a β-sheet can govern the 

binding potency in PDZ domains71. Beuming et al.90 went further to scan the hydration 

sites close to the surfaces of various proteins to generate the thermodynamic profiles and 

a general picture of these structured water molecules. It was found that waters around α-

helices or β-sheets were more desirable to be displaced than those residing around loops. 

Although water molecules resolved in crystal structure always attract more attention, this 

work illustrated that the thermodynamic stability has little correlation with the degree of a 

water molecule buried in an enzyme. The physical underlining of hydrophobic effects 

was once again proved to be complex, but the hot spots detected by WaterMap usually 

imply thermodynamic instability and pharmaceutical druggability, while those cool spots 

usually require careful attention.

WaterMap does not need previous knowledge of the ligand in question, hence 

exhibits promise for effectively filtering new lead optimizations (in series of congeneric 

ligands). With the aid from WaterMap, Chrencik et al.91 inspected the critical role of the 

nitrile group from CP-690550 in Janus kinases (JAKs) inhibiting92,93; Laha et al.94 were 

able to develop and rank a new set of 2,4-diaminothiazoles against Cyclin-dependent 

kinase 5 (Cdk5)95,96, and their new lead improved in vitro mouse microsomal stability; 

while Knegtel and Robinson97 improved their virtual screening results in the examination

of a set of interleukin-2 inducible T cell kinase (Itk) inhibitors98 and identified a unique 

displacement of thermodynamically unfavorable water molecule with a favorably 

solvated aromatic ring nitrogen. Explicit water energy is usually ignored in most scoring 

functions, but the importance of this term to accurately predict ligand potency should not 

be not neglected. In the CADD against plasmodium by targeting falcipain (FP) cysteine 

protease99,100, Shah et al.101 found that water displacement energies could be used to 

better interpret puzzling SAR observations seen for FP-2 and FP-3 inhibitors search. 



Implementing WaterMap analysis into traditional CADD process has successfully 

helped scientists to improve ranking leap optimization and establish better interpretation 

of SARs. However, on the other hand, efforts were also made to compare this protocol to 

other widely utilized methods, for instance MM-GB/SA, to try to address the advantage 

and limitations of WaterMap102,103.

Guimaraes and Mathiowetz103 reported the first attempt in this regard, in which 

they examined series of CKD2 and fXa inhibitors. The authors reasoned WaterMap 

predicted free energy associated with displacing water upon ligand binding and, therefore, 

could be used as a correction term to replace the protein desolvation term in GB to 

improve MM-GB/SA rescoring. Using MM-GB/SA with the GB desolvation term 

excluded, the authors were able to achieve R2 of 0.75 and 0.65 for congeneric sets (thus 

they focused on relative binding free energy instead of absolute binding free energy) of 

fXa and CKD2 inhibitors, respectively. They improved the results to 0.71 and 0.68 

accordingly using WaterMap. While the best results were obtained when integrating 

WaterMap predicted water displacement energy into the MM-GB/SA procedure (without 

the GB desolvation term. Although the margin is not quite large, it validated the idea that 

the two methods can be complementarily utilized in drug discovery. However, as the 

authors also noted, the lack of dynamic screening effect that causes overweighed 

electrostatic contribution in MM-GB/SA binding energies, could lead to unbalanced 

preference of hydrophobic ligand over small or polar molecules. Later, Kohlmann, Zhu 

and Dalgano102 from ARIAD Pharmaceuticals performed a potency prediction study on 

an extensive congeneric series of small-molecule SRC tyrosine kinase inhibitors104,105. 

Although the enzyme flexibility was minimized in this study, WaterMap still failed to 

generate a rational correlation with experimental results when flexibility plays a role that 

cannot be ignored, this is due to the lack of terms such as protein-ligand interactions 

and/or ligand entropy. This case is more illustrative in terms of addressing the limitation 

of the WaterMap strategy: it is an efficient method for binding scenarios dominant by 

hydrophobic effects but an inappropriate quantitative scoring tool when hydrophobic 

effects were not the main driving force.

4. Expert Opinion



In this section, we will first discuss the potential improvements that can be made to 

the WaterMap protocol, and our advices on how to more effectively implement this 

popular method and, and follow with extending discussions to treating water molecules in 

leap optimization stage.

The WaterMap procedure is built on clustering based analysis followed by a short 

restraint MD simulation7,8. The OPLS-2005 all-atom force field64,65 and TIP4P18 4-site 

water model were used for MD set up. The goal of this protocol is to isolate hydration 

sites and scan their thermodynamic profiles; therefore, the choice of water model is of 

great importance and our discussion will start here. Comparing to more commonly used 

3-site TIP3P18 model, TIP4P presents improvements on several aspects, such as diffusion 

coefficient and density, at a modest increase in computational cost106,107. However, TIP4P 

model generally produces poor Lennard-Jones potential well (ε), whereas TIP5P17 model 

developed by Mahoney and Jorgensen well reproduces this property. More importantly, 

TIP5P is the first model that exhibits maximum density at 4 degree (277 K) and it also 

reasonably reproduced pressure effects. Considering these factors, it seems taking the 

advantage of TIP5P over TIP4P could benefit the WaterMap analysis. Unfortunately, 

TIP5P is much more computer time demanding than TIP4P, not to mention TIP4P 

outperforms TIP5P on reproducing liquid-gas (vapor) equilibration24. Modified TIP4P 

models have been introduced, by either fitting to reproduce maximum density at 4 degree 

(TIP4P/2005108), or introducing polarization effect (TIP4P-FQ109), or refitting to 

reproduce other properties110,111. The implementation of these water models could 

possibly improve the WaterMap results, though the importance of these add-on properties 

to the simulation of solvation effect is yet clear. But, as faced in other computer

approaches, this is again a problem of balance between computational expense and 

accuracy. 

WaterMap has been integrated into Glide61,112, available in the Schrodinger suite of 

programs113 and the implementation is not difficult (may be subjected to service fees). 

For users without access to Schrodinger suite of programs, the analysis strategy for MD 

simulations introduced by Young et al.7 and Abel et al.8 is available freely, though it is 

much less straightforward. However, as mentioned in the original proposal7 and 

discussed in a recent validation study102, the hydrophobic enclosure is of the greatest 



importance to the success implementation of WaterMap analysis. In other words, the 

output of this analysis is highly sensitive to the topology of the system. Considering this 

fact, using this procedure against structures known to exhibit conformational flexibilities 

would be inappropriate. An educated guess or judgment should be made before 

implementing WaterMap to make sure that the principle driving force of the binding is 

hydrophobic effect thus fitting the criteria of this protocol. In addition, the advertisement 

of WaterMap protocol emphasis the use of a single structure (for the sake of 

computational efficiency). That would lead to the outputs highly sensitive to the quality 

of the choice of starting structure, whereas running multiple starting structures would 

significantly increase the computing cost. Moreover, it is critical to keep in mind that 

WaterMap might fail to capture the chemistry of ligands other than those congeneric 

ligands due to the lack of term describing ligand conformational entropy, ligand-protein 

interactions and many others. To summarize, researchers should conduct some prep work 

to determine whether the ligand, structural and topological factors are all favored the 

choice of this protocol. 

Although WaterMap is able to give useful insights in the ligand-receptor chemistry 

that other methods failed to, it is far from a robust approach that can handle the binding 

process by itself. As shown in attempts made by different groups102,103, the combination 

of WaterMap and MM-GB/SA displayed improving results to both end. However, this 

approach, though promising, is not guaranteed as well, as suggested by Kohlmann et 

al.102.  Investigators also need a pre-judgment to ensure the topological factor of the 

system suitable is for the WaterMap approach. Possible strategies suitable for this pre-

judgment including calculating non-polar surface area, estimating the fraction of polar 

surface area, or simply visually checking the binding site surrounding environment if 

experienced. Comparing to MM-GB/SA (or MM-PB/SA), FEP (and other computer time 

demanding free energy approaches) is/are more robust in determining the ligand absolute 

binding free energies, but are also structurally dependent56,57. Though FEP does allow 

structural flexibility, Michel et al. showed the results were sensitive to the initial water 

placement and the Jorgensen lab has applied their JAWS56 to improve the water 

placement in the initial structures that feed FEP simulations25. An interesting (and of 

course, computer time demanding) plot is to use the hydration sites determined through 



WaterMap approach as the water placement feeding to subsequent FEP simulations. 

Useful insights could be expected and the development of improved scoring function 

might be benefit from this attempt. However, as mentioned repeatedly, this is again a 

balance between projected computer expense and anticipated accuracy, as faced 

everywhere by computational chemists. 

Lead optimization is an important stage in drug discovery responsible for fulfilling 

the requirement for clinical usefulness and water displacement represents a big challenge 

in this process. More careful, physics-based approaches upon the computational power 

permits should be made in order for successes. Combining single-point energy methods 

such as MM-GB/SA rescoring with WaterMap explicit water analysis made a big strides 

along this path, more robust (and also efficient) methods/approaches are still in need to 

fully govern the protein-ligand binding predictions.
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